Šta je novo?

Most Obrenovac-Surcin

Рељин предлог је најнормалнији. Претпостављам, такође, да се Обреновац и околина греју овом енергијом.
 
Ne rekose mi nista na faxu.Kazu nisu informisani da ih citram " sa ovima na vlasti se nista ne zna".
 
ima dovoljno i za Obrenovac i za staklenike i za Beograd

što se tiče tehnologije, patenti postoje odavno

Inventors:
Nilsson, Erland (Torshalla, SW)
Lundbohm, Lennart (Nacka, SW)
Application Number:
05/352420
Publication Date:
01/20/1976
Filing Date:
04/19/1973
View Patent Images:
Download PDF 3933181 PDF help
Export Citation:
Click for automatic bibliography generation
Assignee:
Nyby Bruk AB (SW)
Primary Class:
138/105
Other Classes:
138/111
International Classes:
F16L1/00; F16L59/12; F16L59/15; F16L59/00; F16L58/00
Field of Search:
138/105, 138/106, 138/111, 138/112, 61/72.1, 61/72.4, 55/138
US Patent References:
3668837 SEPARATOR OF THE SEMIPERMEABLE MEMBRANE TYPE June, 1972 Gross 55/158
3675432 PIPELINE CONSTRUCTION July, 1972 Keene 61/712
3680364 MONITORING HUMIDITY August, 1972 Carrier 73/73
3751879 APPARATUS FOR REDUCING THE DISSOLVED GAS CONCENTRATION IN A LIQUID August, 1973 Allington 55/158

Primary Examiner:
Goldstein, Herbert
Attorney, Agent or Firm:
Craig & Antonelli
Claims:
What we claim is:

1. A long-distance heating conduit, in particular for hot water lines, comprising one or more tubes for conveying heating medium, which tubes are supported on supporting means in the conduit surrounded by a first heat insulating material and covered so that they may be weighted from above, wherein the support means for the tubes consists of a second insulating material resistant to compression, wherein the first heat insulating material surrounding the tubes is also resistant to compression and is enclosed by waterproof cover foils having holes the size and shape of which are dimensioned in such a manner that water substantially cannot penetrate, but that they are permeable to gases and vapors, wherein the foils touch or cover each other with their edges on a top side of the first heat insulating material, and wherein the foils extend along side walls of the first heat insulating material and therebeneath in such a manner that they do not cover one another but leave apertures or a gap.

2. A long-distance heating conduit according to claim 1, wherein the holes in the foils have a diameter of more than 0.002 inches.

3. A long-distance heating conduit according to claim 2, wherein the holes have a diameter of about 0.0008 inches.

4. A long-distance heating conduit according to claim 1, wherein the cover foil is provided with holes of different size.

5. A long-distance heating conduit according to claim 1, wherein the portions of the foils positioned on the top side and about halfway down the side walls of the first heat insulating material are provided with holes having a diameter of 0.0002 inches (0.05 mm) to 0.008 inches (0.2 mm), and wherein the holes in the remaining portions of said heat insulating material side walls having an increasing diameter.

6. A long-distance heating conduit according to claim 1, wherein the cover foils are provided with reinforcement means arranged longitudinally and transversely thereof.

7. A long-distance heating conduit according to claim 6, wherein the reinforcement means are wires.

8. A long-distance heating conduit according to claim 6, wherein the reinforcement means are ribs.

9. A long-distance heating conduit according to claim 6, wherein the reinforcement means are attached only to the side of the cover foil facing the insulating material.

10. A long-distance heating conduit according to claim 1, wherein the top side of the first heat insulating material is surrounded by the cover foil and is formed like a roof gable, and wherein gaps are left between the cover foils and conduit side walls.

11. A long-distance heating conduit according to claim 10, wherein securing means are positioned between conduit side walls and cover foils in order to secure the gap.

12. A long-distance heating conduit according to claim 11, wherein the securing means are ledges.

13. A long-distance heating conduit according to claim 11, wherein the securing means are laths.

14. A long-distance heating conduit according to claim 1, at least the first heat-insulating material consists of light-weight expanded clay aggregates.

15. A long distance heating conduit according to claim 14, wherein the expanded clay aggregates consist of a plurality of balls.

16. A long-distance heating conduit according to claim 1, wherein on one side of the cover foil, a bat of heat-insulating material is positioned.

17. A long-distance heating conduit according to claim 16, wherein the bat of material is a member of the group consisting of flexible polyurethane, rock and mineral wool.

18. A long-distance heating conduit according to claim 1, wherein the cover foil consists of a material resistant to aging and unsusceptible to moisture.

19. A long-distance heating conduit according to claim 18, wherein the cover foil consists of a material selected from the group consisting of plastics, aluminum and titanium.

20. A long-distance heating conduit according to claim 1, wherein the tubes conveying the heating medium consist of a material selected from the group consisting of rust-free ferritic chromium steel and chromium molybdenum steel.

21. A long-distance heating conduit according to claim 1, wherein welded tube sections are provided at the ends of the tubes conveying the heating medium, which tube sections have chamfered front surfaces resulting in V-shaped grooves.

22. A long-distance heating conduit according to claim 1, wherein the tube have ends which are protected by protective layers which can be removed prior to joining tubes.

23. A long-distance heating conduit according to claim 1, wherein the tubes include sections which are joined by gluing.

24. An underground hot fluid conveying tube arrangement comprising:

at least one tube means for conveying hot fluid,

at least one cover means surrounding said tube means for protecting said tube means from corrosive media,

wherein at least a portion of said at least one cover means includes holes of sufficient size to be permeable to gases and vapors of said corrosive media to permit passage of said gases and vapors from inside said cover means to the outside thereof, but impermeable to liquid states of said corrosive media to prevent passage of the liquid corrosive media from outside said cover means to the inside thereof,

and insulating means between said tube means and said cover means for insulating said tube means.


25. An arrangement according to claim 24, wherein said at least one cover means is spaced from said tube means.

26. An arrangement according to claim 25, wherein said tube means is supported within conduit means.

27. An arrangement according to claim 26, wherein said cover means is spaced from said tube means such that water between said cover means and tube means is vaporized and passes through said cover means.

28. An arrangement according to claim 27, wherein said conduit means has a bottom and two side walls, wherein drain pipe means are provided near the bottom of said conduit separated from said tube means with said cover means therebetween, and wherein said cover means forms at least one drainage gap with one of said side walls.

29. An arrangement according to claim 28, whereing said cover means includes a top wall, and two generally vertically arranged side walls at least one of said side walls having holes therein which are smaller at an upper end than at a lower end thereof.

30. An arrangement according to claim 24, wherein said portion of said cover means is waterproof.

31. An arrangement according to claim 24, wherein said holes include different sizes.

32. An arrangement according to claim 31, wherein said cover means has a lower portion having some of said holes large enough to permit the passage of liquid therethrough for draining any liquid from inside said cover means to the outside thereof.

Description:

The invention relates to a long-distance heating conduit, in particular for hot water lines, comprising one or more tubes conveying the heating medium, which tubes are supported on support means in the conduit, surrounded by a heat-insulating material, and covered so that they may be weighted from above.

In a known heating conduit of this type, the cavity between the tubes and the waterproof conduit walls made of concrete are filled up with for example an insulation material of light-weight concrete. In this heating conduit, the penetration of moisture has to be absolutely avoided, since moisture once penetrated can be removed from the insulation only in a very long drying time with the known conduit construction method being employed.

It is, however, impossible to keep the conduit impervious continuously, as it may be damaged for example by too great a mechanical load, by accidents, or other hazards. It may also happen that the tubes conveying the heating medium themselves become pervious. These leakages are mostly minute, but still they prevent the insulating materials impregnated by the hot water, for example, from drying again. By this process, not only a great portion of the insulating effect is being lost, but also favorable conditions are produced for damages caused by corrosion by chlorine ions affecting the tubes conveying the heating medium. Such damages may lead to the complete destruction of the lines, which can then be repaired only at a very high expense.

The object on which the present invention is based lies in preventing occurrences of such damages. According to the present invention the support for the tubes conveying the heating medium comprises an insulating material resistant to compression, and the heat-insulating material surrounding the tubes is also resistant to compression and is enclosed by cover foils having holes, which foils touch each other or cover each other on the top side of the insulation layer, but not on the bottom side where apertures or a gap are to be provided, and above the lining of the conduit bed, outside of the cover foils, drain pipes are provided.

The heating conduit according to the invention dries by itself. The hot water tubes are laid in an insulating material, and a waterproof cover foil is provided above the insulating material to prevent water from penetrating from above. However, the insulating material according to the invention is not surrounded by a completely tight waterproof shell, but by a cover foil having small holes. Said holes are so small that they allow the vapor to escape which is formed upon evaporation of water, but on the other hand, they prevent water from penetrating through the holes into the insulating material. Water runs off to the lining of the conduit bed at the sides and reaches there the drain pipes laid at this point. According to the invention, therefore a more or less tight space is formed containing the hot water tubes and the insulating material, a gauge pressure being generated which results in the aforementioned effect of the holes in the foil. The perforated cover foils are applied along the side walls down to the lining of the conduit bed, without, however, covering each other so that the water of condension formed on the inside of the foils, or other water having penetrated in cases of emergency, can run off freely and can be drained off by the drain pipes.

As an insulating material, balls of expanded clay have proved to be advantageous, which clay has become known under the names "Leca" (light-weight expanded clay aggregates) or "Porondur" (see for example pages 68 and 80 of the book "Leichtbeton", volume I, by Dr.-Ing. Siegfried Reinsdorf, published in 1961). This material combines a good mechanical strength and good insulating qualities against heat losses.

It is expedient to not have the cover foils meet at their ends beneath the tubes, but to leave apertures or a gap so that, upon a great amount of water breaking in, also the water penetrating into the balls of the insulating material may be drained off to the drain pipes.

In another embodiment, the perforated cover foils cover each other or are completely tight also at the bottom. In such a case, either cover foils are used having holes of different sizes, i.e. for example small holes according to the invention on the upper side and at the sides of the insulating material, and larger holes on the bottom side. In cases in which cover foils are used having small holes everywhere, the bottom side has to be provided with large holes, which may be achieved by cutting or punching out.

For example, in the case of inundations or thunder showers, water may penetrate into the insulating material. The embodiment of a heating conduit according to the invention brings about a rapid drying, i.e. only a short period of impregnation occurs, which is endured in particular by chromium steel, but a long period of impregnation as with the known heating conduits does not occur. For the latter, very long periods of drying are necessary in the course of which, as is well known, the attack by corrosion is especially favored.

The essential characteristic of the heating conduit according to the invention is the foil having minute holes. Advantageously, the foil according to the invention consists of a base layer of even thickness provided with minute holes having a diameter of more than 0.002 inches (0.05 mm), preferably, however, of about 0.008 inches (0.2 mm). Advantageously, the foil is provided with longitudinal and transverse reinforcement wires or ribs which, in particular, are only on the one side while the other is completely smooth. Usually, the foil is made of synthetics resistant to aging, but it may also consist of mineral or rock wool or of asbestos or of other fabrics produced of materials resistant in the earth, which fabrics are preferably impregnated, the voids in the fabric corresponding to the holes of the synthetic foil. As the task of said foil having holes consists in keeping dry by evaporation the space in which the tubes conveying the hot water are positioned, naturally every foil material may be used which resists to the attack of moisture and which is resistant to aging, as for example pure aluminium, titanium, silicon alloy steel and the like.

A further characteristic of the present invention consists in that the tube joint connections which are inevitable and occur very often, are executed by means of gluing or welding, the gluing being preferred.

According to a further feature of the invention, the welding is most favorably executed by welding tube sections having a relatively thick wall and being annular in cross section on the ends of the tube (root face welding), the front surfaces being then worked mechanically so that a chamfer is formed which, upon joining together the tubes, makes a V-shaped welding groove then welded in known manner.

The gluing method is characterized in that the preformed tube ends according to the example which tube ends are to be joined, are prepared for gluing and are then protected against contamination by applying protective layers which are removed shortly prior to gluing, thereby guaranteeing a surface quality suitable for gluing. For example, this protective layer consists of a plastic layer pulled off prior to gluing.

The invention will be explained in detail with reference to two embodiments and with the aid of the attached Figures.

FIG. 1 shows a cross section of a heating conduit with two tubes conveying the heating medium positioned therein.

FIG. 2 shows a cross section of a heating conduit with a different arrangement of the insulating material, and

FIG. 3 shows a plan view of a cover foil.

At the bottom of a heating conduit 1 drain pipes 2 are laid. The tubes 3 conveying the heating medium lie upon a block 4 of insulating material, which may be continuous, but which also may consist of individual cubes into which the insulating material has been pressed. But also a loose fill of the insulating material 14 may be used. On all sides, the tubes 3 are surrounded by insulating material which is enclosed by two synthetic foils 5. On the top side, said foils meet like a roof and cover one another with their edges 6. The foils 5 leave a gap 15 between themselves and the side walls of the conduit 1 which gap is expediently kept open by ledges, laths or the like, and, with their bottom ends, the foils go beneath the block 4 where they do not, however, cover one another. The drain pipes 2 are positioned outside of the foils and may also be covered by insulating material 16. The space above the foils is filled up with excavation material up to ground level. It is also possible to cover the conduit with a highway surface, as the insulating layer may be weighted.

In the embodiment according to FIG. 2, the fill 14' of insulating material enclosed by the foils 5' comes up to only about the top edge of the tubes conveying the heating medium. In this case, a plate of heat insulating and water repellant or waterproof material 7 is positioned on top of the fill, which plate has a load capacity sufficient to endure the weights occurring.

Also in the embodiment according to FIG. 2, gaps 15' permeable to water are provided between the side walls of the conduit and the foils 5, through which gaps water may be drained off to the drain pipes 2 which may be covered with an insulating material 16', e.g. Leca balls.

The foils enclosing the heat insulating layer consist, as is shown in FIG. 3, of a base layer 8 advantageously of even thickness, which layer is provided with minute holes 9 of more than 0.002 inches (0.05 mm) diameter and with reinforcement ribs 10 net-like extending over the base layer. The side of the foils provided with the reinforcement ribs engages the insulating layer.

In the case of water breaking in, the water is led along the foils to the conduit walls and between said walls and the foil drawn downwardly to the drain pipes. Also, if water is penetrating from the outside of the conduit wall, the foil serves to drain off the water to the drain pipes. In the case of large amounts of water breaking in, for example upon sudden snow melts, cloudbursts, extensive periods of rain and the like, water may also penetrate the insulating material below the cover foils and come into contact with the warm tubes. Then, the water is evaporated and dissipates up to the foils through the holes of which the vapor may escape upward and to the outside. Thereby, a low gauge pressure is achieved within the covered area. As soon as the large supply of water stops, immediately the drying process starts whereby water coming into contact with the tubes is avoided and thus the precondition for an attack of corrosion. Simultaneously, the full insulation effect is restored. Also the amount of water penetrating in a case of emergency is drained off by the drain pipes.

Apart from the aforementioned advantages of the heating conduit according to the invention, the following is pointed out:

Laying of the tubes may be executed without any auxiliary means, for example cranes, as the tube sections may be laid manually. For handling the known heating conduits also having a good insulating quality, however, cranes have to be used, as the individual sections are very heavy. As a rule, they consist of the protective pipe, the insulating material, and the tube sections. The plant according to the invention is considerably less expensive to construct than the other heating conduits referred to. Conclusively, possible repair works may be executed more easily and more simply than with the known heating conduits.

Once more, it is to be repeated that the heating conduit according to the invention is the only one which may be readily "drowned".

The examples shown serve only to explain, not to limit the invention.

In the drawings and in the specification, there have been set forth preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being defined in the claims.
 
Ili u komercijalnoj varijanti, ovo je tehnologija kompanije Logstor.

Concept & Technology


With the best insulation, LOGSTOR produces the most heat efficient pre-insulated pipes in the world.

Combining this with the widest scale of joints for pipesystems designed to give the shortest possible distance and smallest amount of bends, LOGSTOR gives the customers the possibilities for using the best product with the lowest price.

Complete system
LOGSTOR pre-insulated pipe systems include all the joints, bends, branches and valves necessary to construct an end-to-end pipe system for moving liquids, to meet all local needs and specific requirements.

Every single component is designed to ensure that there are no weak points anywhere in the system. The energy-saving properties are as consistent as possible, and the design ensures easy, rapid installation at minimum cost.

Types of pipe systems currently available
the Single Pipe system
the TwinPipe system
the FlexPipe system
the CopperPipe system

Curved pipes with diameters up to DN800 are available for all systems.

LOGSTOR pre-insulated pipe systems are designed specifi cally to keep energy loss to the absolute minimum. The systems include pipes with three variable insulation thicknesses as standard, to meet different heat retention requirements.

Any energy loss from a pipe system will have a relatively high cost impact. A special diffusion barrier is therefore available as standard for fl exible pipes and as an option for straight single pipes. This keeps the insulation properties of the pipes constant throughout their entire service life.


getfile.php


1: The weldable system
a computer-controlled welding process melts the joint and casing together into one unbreakable, sealed unit.

2: The shrinkable system
the joint (installed before the pipe is welded) is heat-shrunk onto the casing. This involves only one single joint and one foaming procedure for each joint, bend and branch.

3: The mechanical system
this is installed on site and involves only one single joint and one foaming procedure for each joint, bend and branch.

Monitoring systems
LOGSTOR pre-insulated pipes have copper wires running through the insulation. These sensors can be linked to electronic monitoring systems that identify the exact location if the service pipe, insulation or the casing suffers any form of damage
.
 
Pazi, uopšte nije sporno, vrela voda može da se dopremi na L=30 km kroz cev fi 1000, naravno da tehnologije postoje (nisam baš siguran da je ovo primenjivo i na ovakav toplovod).
Samo je pitanje cene, tj odnosa cena/efikasnost.
Termotehničari i termoenergetičari sa kojima sam davno pričao o ovome su se, svi do jednog, češkali po glavi i ponavljali "ma može, ali ne znam kome se to isplati".
I da, ta ideja o zagrevanju plastenika - nije moja :)
 
Ako neznaju sta ce onda mogu da je iskoriste tako stoce ispod puteva da ugrade cijevi i onda nema sanse da zalede zimi :kafa: .
Nego vidjeh one gomile pepela u vecini zemalja ga koriste za za nasipanje ispod auto puteva umjesto pjeska samim tim se znacajno pojeftinjuje gradnja istih oce li nasima to pasti napamet :cool:
 
Sreda, 21. oktobar 2009.

U toku radovi na pristupnim saobraćajnicama mosta na Savi između Obrenovca i Surčina

Direkcija za građevinsko zemljište i izgradnju Beograda finansira izgradnju osam kilometara puta na deonici od autoputa kod petlje „Dobanovci” do mosta na Savi između Obrenovca i Surčina. Prvi kilometar tog puta, koji se nalazi na sredini deonice, već je asfaltiran, a ostalih sedam biće završeno na proleće 2010. godine.

– Radi se o jednom delu pristupnih saobraćajnica mostu od Obrenovca do Surčina, čija rekonstrukcija bi trebalo uskoro da počne. Izgradnja tog mosta prekinuta je pre desetak godina, a odluka da se sa njegovom gradnjom nastavi doneta je prošle godine, kada su grad Beograd, Ministarstvo infrastrukture, Ministarstvo za nacionalni investicioni plan, Direkcija za građevinsko zemljište i izgradnju Beograda, JKP „Beogradske elektrane” i gradske opštine Surčin i Obrenovac potpisale Protokol o realizaciji izgradnje. Taj protokol predviđa da Direkcija za građevinsko zemljište i izgradnju Beograda obezbedi jednu trećinu, a Ministarstvo za NIP, kao suinvestitor, dve trećine sredstava od ukupno 1,6 milijardi dinara potrebnih za završetak radova. Osim rekonstrukcije mosta, potrebno je izgraditi i tridestak kilometara pristupnih saobraćajnica – rekao je za Beoinfo Nenad Bajić, šef informativne službe Direkcije za građevinsko zemljište i izgradnju Beograda.

Na trojni ugovor o nastavku izgradnje mosta Direkcija i „Mostogradnja” su već stavile svoj potpis, ali će radovi moći da počnu tek kada ga potpiše i Ministartvo za NIP.

Osim mosta preko Save, izgradiće se put na teritoriji opštine Obrenovac, od valjevskog puta do Save, kao i put na teritoriji opštine Surčin, od mosta do autoputa (petlja „Dobanovci“). Takođe, radovi obuhvataju i priključni krak na regionalni put u Boljevcima, kojim se ostvaruje veza sa Surčinom.

Kada bude otvoren za saobraćaj, novi most znatno će skratiti vreme putovanja, pa će se iz pravca Obrenovca preko mosta na Savi do autoputa Beograd – Zagreb stizati za manje od pola sata. Vozačima će dalje stajati na raspolaganju i nova obilaznica oko Beograda. Teretni saobraćaj biće izmešten iz Obrenovca, Bariča i Umke. Očekuje se i da izgradnja mosta i pristupnih saobraćajnica poveća interesovanje investitora i doprinese razvoju ovog dela Srbije.
izvor: http://www.beograd.rs/cms/view.php?id=1363628
 



Ovo je casopis teromelektrane nikola tesla za septembar '09 ,kao sto vidite navode da most mora pretrpeti znatne izmene i ne pominju nista u vezi toplovoda osim da je prvobitno bio namenjen za to.Znaci nista od cevi preko mosta.Oh well...
 
Ево како се завршила прича са топловодом (чланак из Гласа јавности, децембар 2004.)

Iz daljinskog toplovoda u Novom Beogradu radnici juče izvadili cevi
Loša investicija zatrpana zemljom
Početkom sledeće godine "Zelenilo" će na ovom zemljištu posejati travu

Daljinski toplovod kojim je trebalo da se stanovnici novobeogradskih blokova snabdevaju toplom vodom, a koga su gradila preduzeća "Projektomontaža" i "Tehno unig konig", posle devet godina konačno je zatrpan.

- Ova promašena investicija počela je da se gradi 1993. godine da bi se prevazišli problemi koji su tada predviđeni. Oni koji su bili na vlasti već tada su znali da ćemo kao zemlja imati velikih problema sa gasom pa je ovo trebalo da bude alternativa i to vrlo skupa alternativa. Ni tadašnje studije nisu pokazale bilo kakvu ekonomsko - finansijsku opravdanost, zato nikada nije ni završen. Godinama unazad, ovde je bila samo rupa, koja se pretvorila u baruštinu. To su komarci, žabe, blato i da ne pričam šta još sve ne - objasnio je Nenad Bogdanović, gradonačelnik Beograda.

Prosta računica

- Ponekad su proste računice jednostavnije od nekih velikih priča. Uzmite da nama za gas u sezoni treba oko 30 do 40 miliona evra, a da na novobeogradsku toplanu otpada oko jedne trećine ukupno potrošenog gasa ili oko 10 miliona evra. To znači da je za izgradnju ovog toplovoda potrebno novca koliko se potroši za 15 godina grejanja. I to još da se ne računa dodatna energija koja bi se potrošila na dogrevanje vode koja treba da teče 30 kilometara od Obrenovca dovde. Za sada je izgubljeno 39 miliona dinara, ali bar ćemo cevi da prodamo - objasnio je Nenad Bogdanović, gradonačelnik Beograda.
Da bi bili sigurni da donose pravilnu odluku stručnjaci su ove godine napravili još jednu studiju koja je, kao i prvobitna, pokazala da nikakve ekonomske koristi od ovakvog načina snabdevanja Novobeograđana toplom vodom nema. Konačan skor i ovih 4.300 urađenih metara, kaže Bogdanović, je promašena investicija. Po novourađenoj studiji postojale su dve mogućnosti: da se postojeći toplovod zaštiti ili da se postavljene cevi izvade a kanal zatrpa.

- Odlučili smo da cevi izvadimo, a kanal zatrpamo. Danas radnici zatrpavaju poslednju deonicu a nakon toga, početkom sledeće godine, Zlenilo će posejati travu. Konačno, nakon toliko godina, ovaj deo Novog Beograda će se rešiti blata i baruštine - dodaje Bogdanović.

Nakon toga će da bi se spasilo do sada 39 miliona dinara izgubljenih na ovom uzaludnom projektu, JKP "Beogradske elektrane" raspisati tender za prodaju cevi. Miodrag Božović, direktor Elektrana, kako nam je juče rekao, očekuje da bi za njih sada moglo da se dobije oko 100 miliona dinara.
http://arhiva.glas-javnosti.rs/arhiva/2004/12/28/srpski/BG04122704.shtml
 
Dakle, investicija bi se isplatila kroz petnaest godina (po njihovoj računici). A ako je verovati gorepomenutoj kompaniji koja proizvodi cevi, dodatno zagrevanje nije potrebno. Da su i u EU išli tom logikom, tunel ispod Lamanša nikada ne bi bio izgrađen jer investicija ne bi mogla da isplati samu sebe u toku jednog mandata. Bolje da i dalje uvozimo gas i mazut i povećavamo deficit. Bar će savske ribe imati đakuzi preko zime. :bash:
 
Pa nije bas tako jednostavno. Prvo, procena je da bi se projekt isplatio posle 15 godina, kada bi se voda dogrevala.
30km specijalno izolovanih cevi fi 1000 se ne bi tako brzo isplatile, u stvari pitanje je da li bi se ikada isplatile pošto je izolacija ipak jedna potrošna roba i morala bi da se redovno održava. A da li su baš ove cevi pogodne za ovaj naš toplovod, pitanje je za sebe...


Pitam se, šta bi uradili npr Šveđani ili Novrežani? Da li bi gradili toplovod prečnika metar i dugačak nekoliko desetina kilometara da bi doveli vodu do naseljenog mesta, ili bi vodu iskoristili za pokretanje razvoja okoline elektrane koja proizvodi tu toplu vodu?
 
Slažem se sa reljom, rešenje koje je više održivo (čini mi se) je holandskog tipa - staklenici koji proizvode povrće zimi a tropsko voće leti... vrlo funkcionalno i jeftino rešenje (pošto imamo sjajnu industriju staklenika i plastenika uopšte).
 
Pre nego sto se ova ideja o toplovodu potpuno opljune treba videti koliko je cena gasa povecana u poslednjih 5 godina i kakvi su moguci trendovi (ne mogu sad da nadjem nikakv podatak o cenama, ali kod nas se non stop zale na vecu cenu gasa, a u novinama ovih dana cena grejanja ispade skuplja na gas nego na struju, sto niko nije pominjao pre 5 godina). Takodje treba videti da li je tehonolgija(kao onaj clanak gore) donelo nesto novo sto bi ovaj projekat ucinilo isplativijim.
Dalje, ovde(u Srbiji) se slabo vodi racuna koliko je dobro biti sto manje energetski zavisan od drugih. Cifra od 15 godina isplate investicije i nije neka ako se uzme u obzir nestabilno trziste, energetska zavisnost i smanjivanje deficita u trgovini sa inostranstvom.
 
Ovi gore koje sam pominjao su Danci. Sada vidim da imaju i predstavnika u Srbiji (lako se nalazi preko sajta). A kako vidim, najveća podružnica im je u Švedskoj. Ako u tim dvema zemljama misle da je ovo dobro rešenje, mislim da će biti dobro i za našu umereniju klimu. Za grejanje staklenika je potrebna komplikovanija infrasttruktura nego za toplovod - ovde je potreban samo par cevi odgovarajućeg promera i dužine. U blokovima i dalje postoji betonska podloga za njih. Topla voda ispuštena u Savu je bahato rasipanje energije koje nemamo dovoljno.

Oh well, čekamo sledećeg gradonačelnika koji je mentalno u 21. ili 22. veku a ne 19. :kafa:
 
znam, ovaj je lukaviji, po ovom pitanju je otišao u duboku ilegalu. Jako pazi šta priča da ne bi lupio nešto. Zna da ga gledamo. :lol:
 
bigvlada":29518aui je napisao(la):
znam, ovaj je lukaviji, po ovom pitanju je otišao u duboku ilegalu. Jako pazi šta priča da ne bi lupio nešto. Zna da ga gledamo. :lol:
to treba da se uvede kao standard kod svih političara :D
 
Ima li kakvih novih vesti? Most izgleda malo nesiguran :) još kad znaš da je gradjen za toplovod :) Što se tiče toplovoda mislim da treba dovesti neku stranu firmu da uradi studiju isplativosti jer je reč o ogromnim količinama tople vode (ima vode za staklenike celog Srema , Obrenovca i grejanje NBG) Treba uraditi procenu cene gasa i mazuta u narednim godinama. Nova tehnologija je sve pristupačnija i jeftinija i naravno br.1 sve pare (sem malog dogrevanja) ostaju nama nama nama :)
 
AKCIJA „ŠTA TE MUČI KOMŠIJA” U OBRENOVCU
Čekaju most već 16 godina

ANA VUŠOVIĆ | 14. 06. 2010. - 00:02h | Foto: J. Vučetić | Komentara: 1
Od 1994. stanovnici Obrenovca čekaju na završetak radova na drumskom mostu koji ih spaja sa susednim Surčinom, a obala Save kod izletišta „Zabran”, bez šetališta i plaže, idealna je oaza samo za komarce. U „Blicovoj” akciji „Šta te muči komšija?” žitelji ove opštine istakli su da se nadaju završetku izgradnje mosta koji bi doprineo boljoj trgovačkoj i poslovnoj komunikaciji sa Surčinom i da priželjkuju sadržaje na obali reke, na kojoj kupači i zaljubljenici u prirodu za sada nemaju nikakvu ponudu.


Izgradnja mosta na Savi kod Termoelektrane „Nikola Tesla” počela je 1994.
Izgradnja mosta na Savi kod Termoelektrane „Nikola Tesla” počela je 1994., a obustavljena 1997. Most je u početku građen za potrebe toplifikacije, daljinskog grejanja Beograda, da bi 2008. novim protokolom njegova funkcija bila preimenovana u drumski most.

- Iako je u početku pravljen za daljinsko grejanje Beograda, 2008. odustalo se od tog projekta. Budžet za nastavak izgradnje nalazi se u planu Direkcije za građevinsko zemljište i izgradnju Beograda, a kompletni radovi koštaju 15 miliona evra. Nakon potpisanog protokola nije bilo radova na ovom mostu, na kojem su planirane dve kolovozne trake. Pre dve godine potpisan je protokol između ministarstva za infrasturkturu, NIP-a i Grada – kaže za „Blic” Željko Jovetić, predsednik opštine Obrenovac.

Prema njegovim rečima ovaj most značajan je za stanovnike Obrenovca, naročito za poljoprivrednike koji svoje proizvode transportuju iz Obrenovca u Surčin i obrnuto, a i omogućio bi stanovnicima opštine i izlazak na auto – put za Zagreb.
- Trenutno radimo saobraćajnu studiju za ovaj prelaz preko reke, a krajnji cilj je da se sredstva predviđena za ekološke projekte ulože u izgradnju mosta.

Dokazaćemo da je izgradnja mosta ekološki projekat. Ukoliko bi se on dovršio, broj vozila na magistralnom putu smanjio bi se sa 80, na 15 hiljada, što automatski znači i niži nivo zagađenja vazduha, zato ću aplicirati da se novac od ekoloških projekata usmeri na izgradnju mosta – dodao je naš sagovornik.

http://www.blic.rs/Vesti/Beograd/193804/Predstava-za-nove-mostove
 
Bejah danas do mosta prvi put licno,stvarno je steta sto ga ne zavrse jer bi pomogao Obrenovcanima da brze stizu do nbg-a,granice i aerodroma.A verujem da bi i Obrenovac postao atraktivniji za ulaganje jer koliko vidim ceo grad je mrtav osim naravno TENT-a u kome primetih da se razbacuju novcem ko da sutra ne postoji.Zavarivac sa srednjom skolom ima platu 50 000 din!

P.S.I dalje po gradu stoje Mrkonjicevi posteri od nekih proslih izbora sa motoom "Mrkonjic,dela govore" :lool:
 
Varioci i kod privatnika imaju približne plate, samo što rade mnogo više i obično su prijavljeni na minimalac. To je dosta deficitarno zanimanje iako se previše lako dobijaju atesti. Od 10 atestiranih varilaca koji odu raditi na zapad samo 1-2 prodju a ostali se prebace na druge gradjevinske manje plaćene poslove.

Nisi rekao radi li se šta na mostu i prilazima?
 
Slazem se,ali ovde su vise pusili i trucali napolju i jeli bo kafiteriji nego sto su radili.Cujem da brusioci a verovatno je i sa variocima imaju posla maksimalno 2-3 sata dnevno,ostalo bleje.Hvala bogu pa je zabranjen alkohol u okviru elektrane inace bi bilo veselo :) Koliko ginu ljudi tamo u elektrani ko da je ratiste,imaju i budale samoubice koje dodju i popnu se na onaj dimnjak od sto i nesto metara i bace se dole.

Sto se tice mosta,nista se apsolutno radi,samo se rdja skuplja i zarasta travuljina.Kao bice ove godine na jesen,svesni su i ljudi iz Obrenovca da ce biti nabrzaka odradjeno pred izbore 2012te jer nemaju cime drugime da ih "kupuju" za izbore.

P.S.Sutra cu dobiti info oko tih cevi koje su planirane do BG-a od sefa za toplovod elektrane pa da vise razjasnimo da li je to isplativo i korisno ili je obratna situacija.
 
Samoubice nisu budale - budale su oni koji misle da mogu da pređu prugu ako je rampa spuštena, i onda bog blagosilja ovu majčicu Zemlju kad ih voz ubije.
A što se tiče cevi - različiti ljudi pričaju različite stvari - cenim da bi sigurno bilo isplativo staviti čitav Obrenovac na toplovod, i bila bi značajna ušteda.
 
Slazem se,nego sam slusao i pre neki dan da je radnik koji radi na kontroli vagona ostao bez noge jer je drugi voz koji dovozi ugalj krenuo pre vremena(isao je masinovodja da gleda utakmicu ili sta pa je pozurio),a neki lik koji je radio zavarivanje na dimnjaku je pao prosle godine sa te visine.Prosto receno,tamo ima previse nesrecnih slucajeva za bilo sta.

A nisam ni znao da za prugu napona 25 000 Volti je zona opasnosti 2 metra,pa ako joj se priblizis na manje od 2m bez kontakta te moze udariti struja ako je dovoljno vlazan vazduh ili pada kisa.

Sto se tice cevi,danas su trebali doneti odluku na skupstini BG-a da prave trecu magistralu,Obrenovcu se jasno isplati,nego je pitanje za BG.

Drzim finge da ce most raditi na jesen ove a ne sledece god ali sanse su nikakve. :(
 
Vrh