Šta je novo?

Obnovljivi izvori energije

Ne znam tacno tehnicke podatke ali znam da u nemackoj ljudi privatno isto tako dosta koriste solarne celije tako da se to sigurno isplati. Nemci nameravaju da pozatvaraju nuklearke a mislim da su i trenutno na prvom mestu u svetu sto se tice zelene energije.
 
^^Veoma moguce i to je meni super. Oni su svi prikljuceni na mrezu pa u trenucima kada proizvode vise energije nego sto iskoriste "pumpaju" taj visak u mrezu i posle dobijaju lovu za to.
 
Milance":n6i6caor je napisao(la):
Ne znam tacno tehnicke podatke ali znam da u nemackoj ljudi privatno isto tako dosta koriste solarne celije tako da se to sigurno isplati. Nemci nameravaju da pozatvaraju nuklearke a mislim da su i trenutno na prvom mestu u svetu sto se tice zelene energije.
To što ih puno ljudi ima ne mora da znači da su sve zajedno ekonomski isplative -- recimo, dobiješ poresku olakšicu ako ti kuća ima solarni panel, firmu koja ih pravi pomaže država što im obara cenu, i kao sve radi, a zapravo šema zahteva da država neprekidno upumpava pare u sistem. Što ako je država u pitanju Nemačka to može da funkcioniše neko vreme, pogotovo ako se tim preusmeravnjam para u zelene projekte usrećuju koalicioni partneri u vladi.

Pitam zato što sam relativno skoro čitao nešto na temu biodizela u Ajovi: Ajova godišnje proizvede *mnogo* kukuruza, i kad naprave sve kokice i kornfleks, nahrane krdmad, napravi šta već hemijska industrija pravi od ljuske kukuruza, i dalje im ostane toliko da ne znaju šta će sa njim. I neko se setio da prave biodizel. Super, Amerika neće zavisiti od strane nafte, živeo Buš, bla bla. I onda je neko seo i napravio računicu i ispostavilo se da se u konkretnom slučaju, za Ajovu, više nafte potroši na dobijanje biodizela nego što se možeš da upotrebiš biodizela, plus što cela ova operacija košta. Ali, pošto su farmeri subvencionisani njima se isplati, a na kraju cenu plati neko drugi.

Mislim, naravno ne kažem da su svi ludi, pričao sam baš pre dve nedelje sa jednim tipom, fizičarem po struci, koji je projektovao biodizel farmu u Washington Stateu i kaže da takve stvari zavise od kulture koju uzgajaš i još puno toga...

Zato me i zanima da li je moguće da se isplati da se u Lajpcigu pravi najveća solarna elektrana na svetu? Meni miriše na projekat otvaranja novih radnih mesta u istočnoj Nemačkoj.
 
Evo članka o solarnim centralama. Da je ovo softver, potpao bi pod abandonware kategoriju (proizvođač propao, niko ga ne prodaje).



 
Solarne farme biće postavljene u afričkoj pustinji
Sunce Sahare energija za celu Evropu
Autor: M. Josifović | 03.08.2008 - 00:01

sahara-v.jpg


Dovoljno je postaviti solarni panel površine Velsa, 20.000 kvadratnih kilometara, negde u Sahari i cela Evropa biće konstantno snabdevena energijom. Za ostvarenje projekta treba izdvojiti preko 450 milijardi evra, a završetak radova predviđa se najranije 2050. godine.

Solarne farme u Sahari, kako su ih popularno nazvali učesnici naučnog skupa u Barseloni gde je pre nekoliko dana predstavljen ovaj projekat, veoma su pouzdane budući da fotovoltažni paneli mogu generisati tri puta više energije od onih postavljenih u severnoj Evropi. Izračunato je da je dovoljno svega 0,3 odsto energije iz pustinjskog sunca za celokupne potrebe najstarijeg kontinenta.
Solarnih panela već ima u pojedinim delovima planete, ali do sada niko nije uspeo da nađe način za konstantan i ravnomeran dotok energije potrošačima. Naučnici se sada nadaju da su konačno uspeli da prevaziđu ovaj problem.
- Ideja je da se energija generiše uz pomoć fotovoltažnih ćelija ili zagrevanjem vode, pomoću sunčeve toplote, do tačke ključanja, a sve u cilju pokretanja turbina. Napravićemo "superrešetku" koja će transmitovati elektricitet visokog napona velikom brzinom, direktno kroz kablove. Prednost rešetke je u tome što će ona biti u mogućnosti da energiju preuzima iz različitih izvora, što znači da će se i problem nestabilnosti prevazići. Dakle, ukoliko u Evropi nema ni vetra ni sunca, a u Sahari ima, rešetka će se sama preusmeriti na postojeći izvor - objasnio je Arnulf Jeger Valdau iz energetskog instituta Evropske komisije.
Međutim, najveća kočnica za realizaciju ovog projekta je njegova cena i vreme potrebno da on zaživi. Velike investicije biće potrebne za ovako nešto, ali ako se uzme u obzir da bi se na ovaj način, do 2050. godine, proizvelo više od 100 gigavata električne energije, što je više od količine koju proizvedu svi izvori u Britaniji, ispada da je ovaj projekat i te kako vredan uloženog novca.
Vizionarski projekat dodatno je pothranjen činjenicom da je upravo fotovoltažna tehnologija jedna od osam tehnologija koje u budućnosti očekuju razvitak i ekspanziju. Ostatak futurističkih tehnoloških rešenja ilustruju gorivne ćelije, vodonik, prečišćen ugalj, biogoriva nove generacije, nuklearna fuzija, vetar i pomenuta "rešetka".

izvor: Blic
http://www.blic.co.yu/slobodnovreme.php?id=51584
 
Naučnici napravili ekološku elektranu za velike dubine
Plutajuća vetrenjača
Autor: E.B. | 17.08.2008. - 00:02

vertenjaca-v.jpg


Umesto da budu ukopane u morsko dno, vetrenjače budućnosti moći će da plutaju na površini vode uz pomoć plovka i sidra. Kompanije „Siemens“ i norveški „StatoilHydro“ zajedno su konstruisale prvu plutajuću vetrenjaču - elektranu, koja će moći da bude postavljena na dubini od 700 metara, zahvaljujući čemu će zaštititi floru i faunu na obali.

Prema računici Nacionalne laboratorije za obnovljive vidove energije iz Amerike, potencijal vetra na razdaljini od 50 nautičkih milja od američke obale jači je od svih trenutno instaliranih energetskih potencijala u elektranama u Americi - koje imaju više od 900 GW. Stručnjaci „Simensa“ i „StatoilHydro“ - dva tržišna lidera u ovoj oblasti, smatrali su da je velika šteta da se ta snaga ne iskoristi, čime bi se ujedno zaštitila i flora i fauna na obali.
Plovak za turbinu koju će prema projektu imati nova vetrenjača dugačak je 120 metara i napravljen od čelika, betona i tankova s opterećenjem, dizajniran da povuče čitavu strukturu do dubine dovoljne da centar mase bude ispod površine vode. To će sprečiti da se vetrenjača pomera uprkos uzburkanom moru. A da bi osigurali da vetrenjača ne potone, tu je i sidro koje je pričvršćeno sa tri čelična kabla za morsko dno. Energija koju vetrenjača proizvodi prenosiće se kablom koji će biti postavljen ispod morskog dna.
Na Norveškoj obali morsko dno se strmo spušta do čak 200 metara na samo 12 kilometara od obale, čineći ovaj deo idealnim za testiranje prototipa plutajuće vetrenjače. Kompanija „StatoilHydro“ preuzela je na sebe da formira morsko dno adekvatno za montažu prve plutajuće vetrenjače, dok je zadatak kompanije „Siemens“ da isporuči viseći stub i turbinu.
Prototip ove vetrenjače biće pušten u upotrebu na obali Norveške 2009. godine. Vetrenjače će po prvi put moći da budu postavljene na velikim dubinama mora i okeana. Naučnici očekuju da će moći da ih postave na dubinama do 700 metara, što je 600 metara više od one na kojoj je to ranije bilo moguće.
Klasične priobalne vetrenjače, ukopane u morsko dno, u upotrebi su poslednjih 15 godina. Međutim, za njihovo usidravanje neophodno je da voda bude mirna i plitka, a sve mašine potrebne za njihovo usidravanje moraju da se nalaze na obali. Samim tim ugrožavaju se ribnjaci i oblasti naseljene pticama na obali. Zbog svega toga, niko se ne usuđuje da drastično poveća broj ovih vetrenjača u priobalnim područjima.
Ukoliko se testiranje prve prototip vetrenjače pokaže uspešnom, u narednih deset godina biće moguće izgraditi 200 ovakvih plutajućih vetrenjača, koje će obezbediti dovoljno energije za milion domaćinstava.

Izvor: Blic
http://www.blic.co.yu/slobodnovreme.php?id=53284
 
Polovina energije mogla bi se proizvesti iz obnovljivih prirodnih izvora
Srbija može da pravi struju od sunca, biomase, vode i vetra
Autor: Dragana Đurić | 01.09.2008. - 06:00


Srbija bi polovinu energije mogla da proizvodi iz obnovljivih izvora energije, ali se trenutno godišnje iskoristi 18 odsto potencijala tih izvora. Najveći udeo mogla bi imati biomasa, od koje bi se moglo proizvoditi oko četvrtine ukupne energije u Srbiji, a velika količina energije može se dobiti i od hidroenergije, sunca i vetra.

Prema podacima Ministarstva rudarstva i energetike, u Srbiji bi godišnje iz obnovljivih izvora energije moglo da se proizvede 4,89 miliona tona ekvivalentne nafte (ten), dok je u prošloj godini ukupna proizvodnja energije iznosila 8,79 tena. Prelaz na obnovljive izvore građani Srbije ne bi osetili kroz cenu energije, koja bi ostala ista, ali bi država, čak i uz dotirane cene, imala višestruke koristi.
- Cena koja bi bila plaćena proizvođaču energije iz obnovljivih izvora, prema procenama Svetske banke i Evropske agencije za rekonstrukciju, bila bi skoro dvostruko veća nego sadašnja. Međutim, država mora biti spremna da dotira razvoj ovog vida proizvodnje zbog velikog broja pozitivnih efekata, počevši od energetske stabilnosti, supstitucije uvoznih energenata i zaštite životne sredine. Do 2020. godine, prema Kjoto protokolu, imamo obavezu da smanjimo emisiju gasova koji dovode do efekta staklene bašte za čak 20 odsto, a ovo je jedini način da to uradimo - smatra Vladan Karamarković, pomoćnik ministra za rudarstvo i energetiku zadužen za opštu energetiku. On dodaje da bi to omogućilo i bolji razvoj domaćih proizvodnih programa, pogotovo u mašinogradnji.

karta-x.jpg


Biomasa
Prema podacima Ministarstva za rudarstvo i energetiku, od biomase bi se mogla proizvoditi čak četvrtina ukupne proizvedene energije u Srbiji. Energetski potencijal biomase u poljoprivredi procenjuje se u ratarstvu na oko tri miliona tona, a u voćarstvu i vinogradarstvu oko 1,1 milion tona. Potencijal ovog energenta iz šumarstva takođe nije zanemarljiv, jer je nacionalnim planom predviđeno da za dve godine 31,5 odsto teritorije Srbije bude prekriveno šumama. U našoj zemlji postoji mogućnost gajenja tzv. energetskih šuma na oko 200.000 hektara neobrađenog zemljišta, na kojem bi se mogle zasaditi brzorastuće šume (topola) koje bi se dalje koristile u energetske svrhe.
- Istraživanja su pokazala da bi se godišnje mogli ostvariti prinosi od 15 do 20 tona drvne biomase po hektaru, odnosno između tri i četiri miliona tona drvne biomase - navodi Dejan Stojadinović, pomoćnik ministra rudarstva i energetike.
Upotreba biomase u Srbiji već je našla primenu u zagrevanju domaćinstava korišćenjem briketa i paleta od biomase. Vrednost investicije koja bi omogućila proizvodnju električne energije iz biomase procenjuje se na oko 50 miliona evra.

Hidroenergija
Hidroenergija u ukupnoj proizvodnji električne energije u našoj zemlji učestvuje sa 32 odsto, a hidropotencijal se crpi iz 63 velike brane. Međutim, svega 70 odsto hidropotencijala u Srbiji je iskorišćeno, a čak oko 60 odsto instalisane snage hidroelektrana ima prosečnu starost 40 godina, dok su pojedine hiroelektrane starije i od 50 godina.
- Za izgradnju malih hidroelektrana snage do 10 MW vlada veliko interesovanje investitora, a procena je da u Srbiji ima 900 potencijalnih lokacija za izgradnju malih hidroelektrana, čiji je kapacitet oko 500 MW. Procenjena dobit svih potencijalnih lokacija za izgradnju malih hidroelektrana u Srbiji iznosila bi oko 50 miliona evra godišnje, što predstavlja motiv za buduće investitore koji nameravaju da ulažu u tu oblast - objašnjava Stojadinović. On dodaje da se najvećim delom taj potencijal nalazi na slivu Morave, na Drini i Limu, kao i na Dunavu.
Predviđeno je da energetske dozvole za gradnju hidroelektrana izdaje Ministarstvo rudarstva i energetike, ali je za hidroelektrane snage ispod jednog MW dovoljna samo saglasnost opštine.

Vetar
Iz energije vetra Srbija bi godišnje mogla da proizvodi 2,3 milijarde kilovat-časova, od čega bi zaradila oko 120 miliona evra. Za ekonomičnu proizvodnju električne energije vetrogeneratorom potrebna je minimalna srednja godišnja brzina vetra od pet metara u sekundi, na visini od 50 metara iznad tla.
- Potrebno je izraditi atlas vetrova Srbije kako bi bio utvrđen precizan plan lokacija na kojima će se graditi vetrogeneratori. Trenutno su aktuelni projekti vetroparka „Dolovo“ kod Pančeva, sa 25 vetrogeneratora snage po 850 kW, „Bela Crkva“ (u opštini Vršac) ukupne snage 100 MW, „Inđija“ sa 20 MW kao i projekat vetroparka „Kovin“, koji je u začetku. Lokacije sa najvećom prosečnom godišnjom brzinom vetra u Srbiji su planinski vrh Midžor, sa prosečnom brzinom vetra od 7,66 metara u sekundi, Suva planina 6,46 metara, Vršački breg 6,27, Tupižnica 6,25 metara, Krepoljin 6,18 metara i Deli Jovan 6,13 metara u sekundi - priča Stojadinović.

Sunce
Kada je u pitanju solarna energija, prema podacima Ministarstva energetike, prosečno sunčevo zračenje u Srbiji je za oko 40 odsto veće od evropskog proseka i iznosi 1,4 kWh godišnje po metru kvadratnom. Enegija koju sunce tokom godine emituje na jednom metru kvadratnog krova kuće u Srbiji jednaka je energiji koja se dobije sagorevanjem 130 litara nafte, a najveći potencijal za korišćenje solarne enegije postoji u Nišu, Kuršumliji i Vranju.

Geotermalna energija
Korišćenje geotermalne energije za grejanje i druge energetske svrhe u početnoj je fazi i veoma je skromno u odnosu na potencijal i resurse.
Ukoliko bi se iskoristio celokupan potencijal postojećih geotermalnih resursa, uštedelo bi se najmanje oko 500.000 kubika tečnog goriva, oko 2,2 miliona tona uglja i oko 600 miliona kubika gasa - objašnjava profesor Mića Martinović, diplomirani inženjer geologije. On navodi da postoji velika zainteresovanost kompanija iz Holandije, Nemačke, Rusije i Danske u direktno ulaganje u korišćenje geotermalne energije u poljoprivredi, odnosno u izgradnju staklenika na površini od preko 300 hektara, uz investiranje od najmanje 200 miliona evra.

Olakšice za investitore
Cena izgradnje male hidroelektrane jačine do jednog megavata iznosi od 700.000 do milion evra. Više od milion evra po megavatu staje podizanje vetrogeneratora, dok je izgradnja postrojenja za proizvodnju energije putem fotonaponskih ćelija najskuplja.
Planiramo da do 1. jula naredne godine donesemo različite podsticajne mere za svaki vid izvora energije da bismo motivisali investitore da grade. Naravno, najveće olakšice biće usvojene baš za najskuplje vidove, odnosno za fotonaponske ćelije - najavljuje Vladan Karamarković.

Upotreba biomase u Beogradu
„Beogradske elektrane“ su započele nekoliko projekata koji se odnose na zamenu upotrebe mazuta, uglja i gasa obnovljivim izvorima energije. Tako, od ove grejne sezone, Toplana „Barajevo“ u Beogradu počinje da proizvodi toplotnu energiju sagorevanjem drvenih peleta, dok će ekološki čisto gorivo „Beoelektrane“ uvesti i u toplane „Sremčica“ i „Senjak“. Početkom ove godine, u okviru Toplane „Konjarnik“ podignuta je zgrada od 220 kvadrata koja se greje i hladi korišćenjem vode iz bunara na dubini od 115 metara. Čukaričani i Rakovičani će kroz dve godine korisiti toplu vodu koja će se dobijati preradom solarne energije u Toplani „Cerak“, a kotlarnica u Krnjači će kao primarno gorivo koristiti sojinu slamu.

Potrebne i nuklearke
Prethodne godine Srbija je potrošila energiju u iznosu od 17 miliona tona ekvivalentne nafte. Čak i ukoliko bi se iskoristili svi potencijali obnovljivih izvora energije, oni ne bi bili dovoljni, s obzirom da se potrošnja iz godine u godinu povećava. Zbog toga je neophodno u skorijoj budućnosti izgraditi nove termoelektrane velike jačine. Takođe, ministar rudarstva i energetike Petar Škundrić smatra da Srbija mora da razmišlja i o izgradnji nuklearnih elektrana pošto je celo naše okruženje, ali i cela Evropa premrežena nuklearkama.

Izvor: Blic
http://www.blic.rs/drustvo.php?id=55148

Slažem se sa svim sem sa zadnjim pasusom. Sve gorepomenute mere, uz drastično povećanu energetsku efikasnost, će nam pomoći da prebrodimo sledećih 30 godina, koliko je još potebno do komercijalnih fuzionih reaktora. Pošto je EU jedan od ključnih partnera na tom projektu (eksperimentalni reaktor se gradi u Francuskoj), a do 2040 ćemo sigurno biti u EU (hoćemo , jel' da? :)), dobi'emo tehnologiju da postojeće termoelektrane zamenimo fuzionim.
 
Shmeksi, nadam se da si mislio na postojeće tehnologije kada si to rekao a ne na fuziju. Naime, za razliku od fisije (cepanje jezgara) gde nusproizvodi imaju vreme poluraspada koje se meri hiljadama godina, fuzioni proces gotovo da ne pravi nuklearni otpad, a i taj ima vreme poluraspada od par sati. Nuklearno gorivo u fuzionom reaktoru može da bude deuterijum (izotop vodonika, teška voda) koji nije radioaktivan, tricijum (drugi izotop vodonika) koji jeste radioaktivan (to je ono od čega satovi svetle u mraku :)) ili helijum 3 (ima ga na mesecu). Ako bi se desila katastrofa (zemljotres, teroristi se skucaju avionom u centralu, bombardovanje) centrala bi bila dekontaminirana posle par sati. Da ne pričam o tome koliko tona uglja ili barela nafte menja jedna šoljica tricijuma. Nuklearno gorivo može da pravi svaka zemlja ali je razvoj reaktora užasno skup, spor i komplikovan proces.
 
Na postojece sam i mislio, jer ovo o cemu si ti pricao iskreno nisam ni imao pojma, ako stvarno to mogu da odrade, a da ne postoji opasnost po okolinu ama bas nikakva onda to moze, ali ovo danasnje ne nikako.
 
To jos ne postoji. Osvajanje te tehnologije je veliki medjunarodni projekat sa neizvesnim ishodom. Dobro je da i pokusavaju da ostvare takvo nesto sto i ako se pokaze moguce bice operativno tek za 3-4 decenije (a mozda i vise). Ako se uspe energija dobiti na taj nacin to ce dramticno promeniti svet kakav poznajemo jer ce energija (posle usavrsavanja te tehnologije(jos 4-5 decenija)) biti veoma jeftina.

http://en.wikipedia.org/wiki/ITER
 
pa da, rekao sam da je realno da 2040 tehnologija postane dostupna, da do tog perioda moramo da se uzdržaimo od građenja nuklearki, a da je jedan od načina povećana energetska efikasnost koja nam je sada kriminalna u poređenju sa EU.
 
постављање соларних панела на кровове зграда и нема неког смисла, али ок је приликом изградње нових зграда постављати соларне панеле уместо фасаде мада ни тада не постоји економска рачуница. коришћење соларних колектора за загревање воде у комбинацији са повећањем енергетске ефикасности је нешто што би требало форсирати од стране државе. иначе за производњу соларних ћелија на садашнјем технолошком нивоу потребно је уложити доста енергије.
 
Obnovljeno postrojenje u Kragujevcu
Proizvode struju iz otpadnih voda
Autor: Nebojša Radišić | Foto:N. Raus | 25.09.2008. - 05:00

KRAGUJEVAC - Sistem za prečišćavanje otpadnih voda u Cvetojevcu kod Kragujevca proradiće do kraja oktobra, posle osam godina zastoja. Najmodernije postrojenje, izgrađeno po nemačkoj tehnologiji, jedino takve vrste na Balkanu, prerađuje prljavu vodu iz kanalizacije, proizvodi struju i na energiji godišnje uštedi oko 100.000 evra.

kanalizacija-x.jpg


Prema rečima tehničkog direktora Javnog komunalnog preduzeća „Vodovod i kanalizacija“ Novice Miloševića, „u renoviranje postrojenja, koje ne radi od bombardovanja, uloženo je ukupno četiri miliona dinara“. Postrojenje je izgrađeno 1990. godine, vredi 20 miliona evra, a kako navode u „Vodovodu i kanalizaciji“, investicija u njegovu popravku će se isplatiti za nepunih godinu dana.
- Toliko je bilo potrebno da se remontuju generatori za proizvodnju struje od biogasa, koji se stvara kao produkt raspadanja organskih materija u otpadnim vodama. U ovom sistemu se otpadna voda prečišćava uz pomoć bakterija i aktivnog uglja. Nakon što prođe kroz više specijalnih bazena, u reku se ispušta čista voda. Ovako se radi jedino u Kragujevcu, dok se u ostalim gradovima u Srbiji, među kojima je i Beograd, sva kanalizacija ispušta direktno u reke i stvara veliko zagađenje - kaže Novica Milošević.
Sistem za prečišćavanje u Cvetojevcu može da preradi 1.520 litara vode u sekundi. Novi gasni generatori, a ima ih dva, proizvode struju koja se koristi za rad „Vodovoda i kanalizacije“, a višak električne energije se ustupa elektrosistemu Srbije. Zato se, kako navode u JKP „Vodovod i kanalizacija“, njima struja naplaćuje po tarifi umanjenoj za 50 odsto.

Izvor: Blic
http://www.blic.rs/srbija.php?id=58216

Znam da kanalizacija ne spada u prirodne izvore obnovljive energije ali je ipak reč o resursu koji je stalno prisutan. Ovo je sjajno rešenje, da li se nešto slično planira za Makiš? Ako ne, trebalo bi, treba nam svaki kilovat koji možemo da dobijemo iz sopstvenih izvora.
 
Carbon the currency of a new world order


Britain's initiative on climate change has set the challenge for Australia's leaders, writes editor-at-large Paul Kelly
| March 21, 2007


ONE of Kevin Rudd's contacts with whom he keeps in regular dialogue is Britain's Secretary of State for Environment, Food and Rural Affairs, David Miliband, a climate change crusader and a leader of the political revolution sweeping Britain and Europe.
Last week Miliband announced that Britain will become the world's first nation to legislate a climate change bill setting legally binding timetables for a low-carbon economy. It will put into law the target of 60 per cent emission cuts by 2050, the same target pledged by Rudd's Labor Party. This decision will affect every British industry, business and household.

Miliband is not just environment minister. He met Rudd when he worked in Tony Blair's office at Downing Street as a New Labour strategic thinker. Now he is recasting social democratic philosophy and practice for the coming century.

Miliband's discussion paper sees the greenhouse challenge as "similar in scope to the first industrial revolution". It is tied to the EU heads of government decision over March 8-9 on an independent binding target to cut Europe's greenhouse gas emissions by 20 per cent by 2020 (compared with 1990 levels) and to lift this target to 30 per cent as part of a global agreement.

The purpose is to impose this system on the world. Britain and Europe are setting benchmarks for a new global order. Miliband's paper makes this explicit: "By forming a single negotiating block, the EU will be influential in forging a post-2012 framework." Britain's next prime minister, Gordon Brown, said last week: "My ambition is to build a global carbon market founded on the EU emissions trading scheme and centred in London."

As Chancellor and a climate change believer, Brown outlined the scope of the revolution. The bill will create statutory carbon budgets that will be managed "with the same prudence and discipline" as financial budgets. For Brown, the carbon will be counted like the pound sterling.

Miliband's paper calls this a "fundamentally new approach". It recognises that targets are not enough. His system envisages "legally binding five-year carbon budgets set at least 15 years ahead" to give business and individuals certainty when investing in low-carbon technologies.

A new statutory body (a variation of central bank powers) will provide independent expert advice on carbon budgets and make progress reports to which governments must respond. Miliband says this means "the government is held to account every year on its progress towards each five-year carbon budget and the 2020 and 2050 targets". Governance is being remade to deliver a low-carbon economy.

Brown explains this transformation in relations between state and citizen. He aims to have all new homes rated carbon zero within a decade. For existing homes he wants meters to give an energy efficiency rating that feeds into mortgage and home design policies so that energy-efficient homes have a higher market value. Miliband wants an energy performance certificate for all homes up for sale. These ministers espouse a personal carbon calculator so individuals are able to measure their own carbon footprints.

What are the implications of this? Miliband and Brown favour a market-based price for carbon. They favour global targets that carry serious risks for Australia given its fossil fuel economy. And they favour a Big Brother interventionism redolent of the search for a post-socialist meaning for democratic socialism. Plenty for Rudd to contemplate.

The EU hovers between risk and opportunity in spearheading this global campaign. Miliband's paper captures its essence: "The risk is that we move too far and too fast and place business at a competitive disadvantage - the opportunity is that by early action we can become leaders in the emerging markets created by environmental industries" and a low-carbon economy.

It is an honest statement of the British and EU dilemma. Britain and Europe are gambling that by leading the campaign they will become winners. The logic of Europe's tough emission targets is that it must persuade the rest of the world to sign up. Miliband's paper says Britain's task is to "mobilise support for an international agreement that will drive investment in a low-carbon economy".

Australia should take heed from these trends. This debate is no longer just about the environment. It is about economics, culture, ideology and foreign policy. The old debate about climate change believers and sceptics is dead (being kept alive only for political gain). The new debate is about policy solutions.

Over the next several months John Howard and Rudd will announce their own solutions and their values, just as Britain has done. What path will they follow?

There are three core needs for Australia. It needs a policy with a market-based price for carbon; a policy that recognises Australia cannot solve the climate change crisis because it requires a global solution; and a position that can be projected into regional and global debates as a counterweight to Europe.

Australia's first decision must be whether the climate change solution lies in markets or a new generation of government economic planning. In its submission to Howard's taskforce, the Business Council of Australia signals its preference: "The most effective solution is one primarily based on a market solution."

The BCA backs a trading scheme with a cap to set a maximum level of emissions. It argues that government should not predetermine energy sources. This is the approach of Howard's taskforce and it will probably dominate in Howard's policy.

The alternative, favoured by the Greens, is for fixes imposed by government and justified by "world is nigh" alarmism. This is a winner-picking industry policy - you back renewables, wind, solar or anything else, ban nuclear power and begin the great coal shutdown. It won't be embraced by any government.

The real question facing Rudd Labor is whether it leans towards market or government-imposed energy solutions. At the moment Labor is being panned for either wanting the coal industry to expand or wanting it to shut. As long as Labor encourages expectations that the government's job is to decide which energy industries survive or die then politics will be conducted on this basis - it will win or lose votes according to industry decisions.

Labor needs to bring the politics into harmony with its policy. Rudd Labor backs an emission trading regime that favours market-based solutions. This means government doesn't close down industries or talk about closing down industries. It also means that government support for renewables, while necessary, has to be kept within the limits of the market and budget responsibility.

Izvor: The Australian
http://www.theaustralian.news.com.au/story/0,20867,21417792-12250,00.html

Ovo je interesantna tema, gledano iz neutralnog (australijskog) ugla, tj. da će pravo na emisiju CO2 biti tretirano kao valuta.
 
A Nuclear Reactor in Every Home

Sometime between 2020 and 2030, we will invent a practically unlimited energy source that will solve the global energy crisis. This unlimited source of energy will come from thorium. A summary of the benefits, from a recent announcement of the start of construction for a new prototype reactor:

• There is no danger of a melt-down like the Chernobyl reactor.
• It produces minimal radioactive waste.
• It can burn plutonium waste from traditional nuclear reactors.
• It is not suitable for the production of weapon grade materials.
• Global thorium reserves could cover our energy needs for thousands of years.

If nuclear reactors can be made safe and relatively cheap, how popular could they get?

It depends on how cheap we’re talking about. Most reactor designs utilize thorium use molten salt (or lead) as a coolant. Even though they were developed as early as 1954, molten salt-coolant reactors are a relatively immature technology. Interestingly enough, the first nuclear reactor to provide usable amounts of electricity was a molten salt reactor. Three were built as part of the US Aircraft Reactor Experiment (ARE), whose purpose was to build a reactor small and sturdy enough to power a nuclear bomber. These reactors are about the size of a large truck.

State-of-the-art nuclear reactors, such as Westinghouse’s AP1000, cost $1.5 billion to build and produce 1.1 gigawatts of electricity. They cost around $50 million per year to maintain, and $30 million per year for uranium fuel. Nevertheless, they are slowly starting to compete with other sources of power like solar and fossil fuels. Eventually, they will rocket right past them. The goal is plants that only cost only $990 per kilowatt. A kilowatt-year of electricity sells for about $876, and a gigawatt-year $876 million, so even if these plants cost $1 billion to build, they can make $964 million worth of electricity every year. If fuel and maintenance costs are about $225 million per year, then your profit is $739 million/year. This is a huge profit. What prevented us from reaping the benefits of this in the past was inferior and more expensive building techniques frequently running overbudget, with some projects costing $4 - $5 billion to complete.

The AP1000 is a Generation III reactor, a new class of reactor that started coming online in 1996. More advanced Generation III reactors are sometimes called Generation III+, because they offer better performance but are not revolutionary. The benefits of Generation III+ reactors are obvious. They are economically competitive, but still have high capital and fuel costs. A lot of this high capital cost comes from excessive safety regulations. In “The Nuclear Energy Option”, Bernard L. Cohen calculates that ever-escalating safety restrictions increase the cost of nuclear power plants by as much as four or five times, compensating for inflation:

Commonwealth Edison, the utility serving the Chicago area, completed its Dresden nuclear plants in 1970-71 for $146/kW, its Quad Cities plants in 1973 for $164/kW, and its Zion plants in 1973-74 for $280/kW. But its LaSalle nuclear plants completed in 1982-84 cost $1,160/kW, and its Byron and Braidwood plants completed in 1985-87 cost $1880/kW — a 13-fold increase over the 17-year period. Northeast Utilities completed its Millstone 1,2, and 3 nuclear plants, respectively, for $153/kW in 1971, $487/kW in 1975, and $3,326/kW in 1986, a 22-fold increase in 15 years. Duke Power, widely considered to be one of the most efficient utilities in the nation in handling nuclear technology, finished construction on its Oconee plants in 1973-74 for $181/kW, on its McGuire plants in 1981-84 for $848/kW, and on its Catauba plants in 1985-87 for $1,703/kW, a nearly 10-fold increase in 14 years. Philadelphia Electric Company completed its two Peach Bottom plants in 1974 at an average cost of $382 million, but the second of its two Limerick plants, completed in 1988, cost $2.9 billion — 7.6 times as much. A long list of such price escalations could be quoted, and there are no exceptions. Clearly, something other than incompetence is involved.

That something is huge safety restrictions. When the risk of meltdown is removed, these restrictions will be lifted. Carlo Rubia, a Nobel Prize-winning physicist and advocate of thorium power, writes, “after a suitable “cool-down” period, radioactive “waste” reaches radio-toxicities which are comparable and smaller than the one of the ashes coming from coal burning for the same produced energy”. So waste and containment - the two main sources of cost and controversy for traditional reactors - are all but eliminated with thorium.

The world-changing thorium reactor I am envisioning qualifies as a Generation IV reactor. A Generation IV reactor will pay for itself even more quickly than a Generation III reactor, and will replace every other source of electrical power in terms of cost-effectiveness. Generation IV reactors will be the fission reactors to end all fission reactors.

The Generation IV International Forum’s definition:

Generation IV nuclear energy systems are future, next-generation technologies that will compete in all markets with the most cost-effective technologies expected to be available over the next three decades.

Comparative advantages include reduced capital cost, enhanced nuclear safety, minimal generation of nuclear waste, and further reduction of the risk of weapons materials proliferation. Generation IV systems are intended to be responsive to the needs of a broad range of nations and users.

Currently, it is thought that Generation IV reactors will not come online before 2030, at least according to the Generation IV International Forum’s Technology Roadmap. A substantial amount of R&D must be done to develop the molten salt reactor idea into a viable construction plan. However, I am more optimistic on timescales. Improvements in materials science and high-quality manufacturing will relax design requirements, decreasing research time from 20 years to 10 years and building time from 3-5 years to one year. That is why I can imagine thorium reactors by 2020.

Thorium reactors will be cheap. The primary cost in nuclear reactors traditionally is the huge safety requirements. Regarding meltdown in a thorium reactor, Rubbia writes, “Both the EA and MF can be effectively protected against military diversions and exhibit an extreme robustness against any conceivable accident, always with benign consequences. In particular the [beta]-decay heat is comparable in both cases and such that it can be passively dissipated in the environment, thus eliminating the risks of “melt-down”. Thorium reactors can breed uranium-233, which can theoretically be used for nuclear weapons. However, denaturing thorium with its isotope, ionium, eliminates the proliferation threat.

Like any nuclear reactor, thorium reactors will be hot and radioactive, necessitating shielding. The amount of radioactivity scales with the size of the plant. It so happens that thorium itself is an excellent radiation shield, but lead and depleted uranium are also suitable. Smaller plants (100 megawatts), such as the Department of Energy’s small, sealed, transportable, autonomous reactor (SSTAR) will be 15 meters tall, 3 meters wide and weigh 500 tonnes, using only a few cm of shielding. From the Lawrence Livermore National Laboratory page on SSTAR:




SSTAR is designed to be a self-contained reactor in a tamper-resistant container. The goal is to provide reliable and cost-effective electricity, heat, and freshwater. The design could also be adapted to produce hydrogen for use as an alternative fuel for passenger cars.

Most commercial nuclear reactors are large light-water reactors (LWRs) designed to generate 1,000 megawatts electric (MWe) or more. Significant capital investments are required to build these reactors and manage the nuclear fuel cycle. Many developing countries do not need such large increments of electricity. They also do not have the large-scale energy infrastructure required to install conventional nuclear power plants or personnel trained to operate them. These countries could benefit from smaller energy systems, such as SSTAR, that use automated controls, require less maintenance work, and provide reliable power for as long as 30 years before needing refueling or replacement.

SSTAR also offers potential cost reductions over conventional nuclear reactors. Using lead or lead–bismuth as a cooling material instead of water eliminates the large, high-pressure vessels and piping needed to contain the reactor coolant. The low pressure of the lead coolant also allows for a more compact reactor because the steam generator can be incorporated into the reactor vessel. Plus with no refueling downtime and no spent fuel rods to be managed, the reactor can produce energy continuously and with fewer personnel.

Because thorium reactors present no proliferation risk, and because they solve the safety problems associated with earlier reactors, they will be able to use reasonable rather than obsessive standards for security and reliability. If we can reach the $145-in-1971-dollars/kW milestone experienced by Commonwealth Edison in 1971, we can decrease costs for a 1-gigawatt plant to at most $780 million, rather than the $1,100 million to build such a plant today. In fact, you might be able to go as low as $220 million or below, if 80% of reactor costs truly are attributable to expensive anti-meltdown measures. A thorium reactor does not, in fact, need a containment wall. Putting the reactor vessel in a standard industrial building is sufficient.

Current operating costs, ignoring fuel costs, for a 1-gigawatt plant are about $50 million/year. With greater automation and simplicity in Generation IV plants, in addition to more reasonable safety and security regulations, this cost will be decreased to $5 million/year, equivalent to the salary of about 60 technicians earning $80K/year. Because the molten salt continuously recirculates the fuel, the time-consuming replacement of fuel rods is not necessary - you just dump in the thorium and out comes energy. However, if molten salt is used as a coolant, it must be recirculated and purified external to the reactor vessel. This requires a chemical reprocessing facility, of a type that has only yet been demonstrated in a lab. The scale-up to industrial levels has currently been labeled as uneconomic, but improvements in salt purification technology over the next decade will bring the costs down greatly, and eventually the entire process will be automated. If thorium reactors become popular, automated, and mass-produced, the technology could improve to the point where the cost of maintaining a 1-gigawatt nuclear reactor will eventually drop as low as $1 million/year, or less.

Today, the nuclear industry primarily makes money by selling fuel to reactor operators. So there is little incentive to switch over to a fuel that will eventually be obtainable for as low as $10/kg. According to “The Economics of Nuclear Power”, a kg of enriched uranium in the form of uranium oxide reactor fuel is $1633/kg.

Today, thorium is relatively expensive - about $5,000 per kilogram. However, this is only because of there is currently little demand for thorium, so as a specialty metal, it is expensive. But there is 4 times as much thorium in the earth’s crust as there is uranium, and uranium is only $40/kg. If thorium starts to be mined en masse, its cost could drop to as low as $10/kg. This factor-of-500 reduction in cost would be similar to the reduction in cost that electricity experienced throughout this century, only compressed into a few years. It is estimated that Norway alone contains 180,000 tons of known thorium reserves. Global deposits of thorium:

• 360,000 India
• 300,000 Australia
• 170,000 Norway
• 160,000 United States
• 100,000 Canada
• 35,000 South Africa
• 16,000 Brazil
• 95,000 Others

Thorium could cost a lot less than uranium fuel because it doesn’t need to be enriched to be used as fuel. As stated before, enriched uranium oxide gas costs $1633/kg, and 1-gigawatt nuclear power plants buy about $30 million in fuel annually, which works out to about 20,000 kg. You can read more at the wikipedia entry for the uranium market.

Even if the price of thorium never goes below $50/kg, it still represents a factor-of-32 economy improvement over uranium oxide. If a 1-gigawatt thorium reactor consumes amounts of thorium similar to the amount of uranium consumed by nuclear reactors today, fueling it for a year would only cost $1 milion, using the $50/kg price point, or $200,000, using the $10/kg price point.

Building a 1-gigawatt uranium plant today costs about $1.1 billion. Building a 1-gigawatt thorium plant will cost only about $250 million, or less, because meltdown concerns can be tossed out the window. This fundamentally changes the economics of nuclear power. We can call this the capital cost benefit of thorium.

Fueling a 1-gigawatt uranium plant today costs $30 million/year. Fueling a 1-gigawatt thorium plant will cost only $1 million/year, because thorium is four times more abundant than uranium and does not need to be enriched - only purified - prior to being used as fuel. We can call this the fuel cost benefit of thorium.

Staffing a 1-gigawatt uranium plant today costs $50 million/year. With greater automation, and (especially) fewer safety/security requirements, we will decrease that cost to $5 million/year. Instead of requiring 500 technicians, guards, personal assistants, janitors, and paper pushers to run a nuclear plant, we will only need a small group of 30 or so technicians to run the plant. (When the technology reaches maturity.) Generation IV nuclear plants will be designed to be low-maintenance.

Based on these numbers, over a 60-year operating lifetime, both plants produce 60 gigawatt-years of power. The total cost for the uranium plant is $4.9 billion, at a rate of $81.6 million per gigawatt-year. The total cost for the thorium plant is $490 million, at a rate of $8.16 million per gigawatt-year. Thorium power makes nuclear power ten times cheaper than it used to be, right off the bat.

Of course, ten times cheaper electricity is impressive, and blows everything else out of the water, but it doesn’t quite qualify as the “unlimited source of energy” I was talking about. Why will thorium lead to practically unlimited energy?

Because thorium reactors will make nuclear reactors more decentralized. Because of no risk of proliferation or meltdown, thorium reactors can be made of almost any size. A 500 ton, 100MW SSTAR-sized thorium reactor could fit in a large industrial room, require little maintenance, and only cost $25 million. A hypothetical 5 ton, truck-sized 1 MW thorium reactor might run for only $250,000 but would generate enough electricity for 1,000 people for the duration of its operating lifetime, using only 20 kg of thorium fuel per year, running almost automatically, and requiring safety checks as infrequently as once a year. That would be as little as $200/year after capital costs are paid off, for a thousand-persons worth of electricity! An annual visit by a safety inspector might add another $200 to the bill. A town of 1,000 could pool $250K for the reactor at the cost of $250 each, then pay $400/year collectively, or $0.40/year each for fuel and maintenance. These reactors could be built by the thousands, further driving down manufacturing costs.

Smaller reactors make power generation convenient in two ways: decreasing staffing costs by dropping them close to zero, and eliminating the bulky infrastructure required for larger plants. For this reason, it may be more likely that we see the construction of a million $40,000, 100 kW plants than 400 $300 million, 1GW plants. 100 kW plants would require minimal shielding and could be installed in private homes without fear of radiation poisoning. These small plants could be shielded so well that the level of radiation outside the shield is barely greater than the ambient level of radiation from traces of uranium in the environment. The only operating costs would be periodic safety checks, flouride salts, and thorium fuel. For a $40,000 reactor, and $1,000/year in operating costs, you get enough electricity for 100 people, which is enough to accomplish all sorts of antics, like running thousands of desktop nanofactories non-stop.

Even smaller reactors might be built. The molten salt may have a temperature of around 1,400°F, but as long as it can be contained by the best alloys, it is not really a threat. The small gasoline explosions in your automobile today are of a similar temperature. In the future, personal vehicles may be powered by the slow burning of thorium, or at least, hydrogen produced by a thorium reactor. Project Pluto, a nuclear-powered ramjet missile, produced 513 megawatts of power for only $50 million. At that price ratio, a 10 kW reactor might cost $1,000 and provide enough electricity for 10 persons/year while consuming only 1 kg of thorium every 5 years, itself only weighing 1000kg - similar to the weight of a refrigerator. I’m not sure if miniaturization to that degree is possible, or if the scaling laws really hold. But it seems consistent with what I’ve heard about nuclear power in the past.

The primary limitation with nuclear reactors, as always, is containment of radiation. But alloys and materials are improving. We will be able to make reactor vessels which are crack-proof, water-proof, and tamper-proof, but we will have to use superior materials. We should have those materials by 2030 at the latest, and they will make possible the decentralized nuclear energy vision I have outlined here. I consider it probable unless thorium is quickly leapfrogged by fusion power.

The greatest cost for thorium reactors remains their initial construction. If these reactors can be made to last hundreds of years instead of just 60, the cost per kWh comes down even further. If we could do this, then even if there were a disaster that brought down the entire industrial infrastructure, we could use our existing reactors with thorium fuel for energy until civilization restarts. We could send starships to other solar systems, powered by just a few tons of thorium. We will simultaneously experience the abundance we always wanted from nuclear power with the decentralization we always wanted from solar power. We will build self-maintaining “eternal structures” that use thorium electricity to power maintenance robots capable of working for thousands of years without breaks.

What nuclear reactors provide:

• heat
• electricity
• fresh water through desalination
• propulsion

Izvor: acceleretingfuture.com
http://www.acceleratingfuture.com/michael/blog/category/futurism/page/3/

Ja ovu tehnologiju vidim kao kariku koju nedostaje između onoga što danas imamo (nafta, gas, uranijum, plutonijum, ugalj) i onoga što ćemo imati kroz par decenija (fuzija).

Niski troškovi izgradnje (220-780 miliona dolara za 1GW elektranu), održavanja (gorivo 1 milion dolara, ljudstvo 5 miliona dolara godišnje), nemogućnost konvertovanja tehnologije u vojne primene, topljenja reaktora kao i rešeni problemi sa nuklearnim otpadom čine torijumske fisione reaktore prihvatljivom tehnologijom.

4-5 ovakvih elektrana od 1000 megavata (koje bi koštale mnogo manje od sume koju država planira da potroši za koridor 10), smeštenih u ugljenokop koji bi bio zatvoren (ja tipujem na Kolubaru) bi nam rešile probleme sa energijom na duži vremenski rok.

btw. Karlo Rubia je bio direktor CERN-a, krajem osamdesetih a sada se bavi energetskim problemima.

Pitanje, da li mi negde imamo rudnik Torijuma? Ili bar nalazište?
 
Napravljena elektrana koja će da proizvodi jeftinu struju
Mini-nuklearka za 20.000 kuća
Autor: | 16.11.2008. - 00:02

elektrana-v.jpg


Nuklearne elektrane manje od dvorišne šupe koji će snabdevati energijom 20.000 domaćinstava moći će da se kupe za pet godina, tvrde naučnici u Los Alamosu, američkoj državnoj laboratoriji koja je stvorila i prvu atomsku bombu.

Minijaturni reaktori biće s fabričkom garancijom, neće sadržavati nikakve materijale koji se mogu iskoristiti za oružje, neće imati pokretnih delova i biće zakopane u zemlju i zabetonirane pa će ih biti nemoguće ukrasti.
Američka vlada dala je licencu za proizvodnju ovih mini nuklearnih elektrana firmi „Hiperion“, koja se nalazi u Nju Meksiku. Rukovodstvo ove kompanije tvrdi da je primilo već oko 100 narudžbi, uglavnom od energetskih i naftnih preduzeća, tako da planiraju da počnu sa serijskom proizvodnjom u narednih pet godina.
– Cilj nam je da se proizvodi jeftina struja, vat za 10 centi. Svaka mini-elektrana koštaće oko 25 miliona dolara, a moći će da pokrije potrebe 20.000 domaćinstava, što će svako domaćinstvo koštati oko 2.500 dolara – rekao je Džon Dial, izvršni direktor „Hiperiona“.
Kompanija kao potencijalne mušterije vidi i zemlje u razvoju i izolovane ljudske zajednice, a planira da otvori tri fabrike koje bi između 2013. i 2023. godine proizvele 4.000 mini-elektrana.
Lista čekanja na ova postrojenja duga je šest godina. Prva narudžbina stigla je od TES-a, češke kompanije specijalizovane za proizvodnju energije, za šest elektrana, od kojih će prva biti instalirana u Rumuniji.
– U pregovorima smo sa proizvođačima i na Kajmanskim ostrvima, u Panami i na Bahamima – tvrdi Dial.
Reaktori koji u prečniku imaju 1,5 metara mogu da se prenose brodom, kamionom ili vozom.
Nakon isporuke zakopavaju se u zemlju i moraju da se pune svakih sedam do 10 godina. Iako im je dizajn star 50 godina, izumitelji tvrde da su elektrane više nego sigurne i da se sa njima nikad ne bi mogao ponoviti akcident kao u Černobilju.
– Nema pokretnih delova, nema osiromašenog uranijuma, a isporučuje se fabrički zapečaćena i nikad se ne otvara na licu mesta. Ako se i otvori, gorivo koje je unutra automatski se hladi. A otpad koji ovo postrojenje napravi nakon pet godina rada veličine je lopte i dobar je kandidat za reciklažu goriva, tvrde proizvođači.

Izvor: Blic
http://www.blic.rs/slobodnovreme.php?id=65651

Još jedno prelazno rešenje do fuzije. Verujem da bi kod nas pristali da ovo postave isključivo u nekom napuštenom kamenlomu, površinskom kopu ili odlagalištu pepela.
 
Ovo deluje skoro kao idealno rešenje. Ne razumem se u tu oblast ali super zvuči to da skoro ništa ne treba ulagati (osim kupovne cene), a dobijati energiju za tako veliki broj korisnika i to na dug period. Pogotovo je pohvalno da gotovo da ne stvara otpad!
 
Dulić: Neefikasno trošenje energije
21. novembar 2008. | 19:15 | Izvor: Beta
Beograd -- U Srbiji se troši 4,6 puta više energije od evropskog proseka i zato je važno da se zamlja okrene obnovljivim izvorima energije, rekao je ministar Oliver Dulić.

"Srbija je jedna od energetski najneefikasnijih zemalja u svetu i Evropi", kazao je ministar životne sredine i prostornog planiranja Srbije Dulić na konstitutivnoj sednici Nacionalnog tela za primenu mehanizama čistog razvoja.

On je naveo da je cilj tog tela je da se dugoročno obezbedi stabilnost izvora energije i očuva životna sredina, ali i da se kroz projekte privuku strane investicije.

"Procene su da će ovo telo donoseći pravovremene odluke uspeti da privuče blizu 225 miliona evra samo u sistem obnovljivih izvora energije", naveo je ministar životne sredine i prostornog planiranja.

Dulić je poručio da Srbija neće moći da uđe u Evropsku uniju ako na dobar način ne bude krenula da sprovodi protokol iz Kjota.

On je podsetio da je Evropa Kjoto protokolom zacrtala sebi cilj da smanji potrošnju energije i podstakne korišćenje obnovljivih izvora energije i naveo da Srbija tome mora da se priključi.

Članovi Nacionalnog tela za primenu mehanizama čistog razvoja su predstavnici ministarstava životne sredine i prostornog planiranja, energetike i rudarstva, ekonomije i regionalnog razvoja, poljoprivrede, šumarstva i vodoprivrede kao i ministarstava infrastrukture i finansija.
извор Б92
линк http://www.b92.net/info/vesti/index.php?yyyy=2008&mm=11&dd=21&nav_category=12&nav_id=330099
 
Groundbreaking Energy Ball Wind Turbine for Home Power
by Moe Beitiks

92393595ab0.jpg


Swedish company Home Energy recently revealed an innovative wind turbine that spins in a spherical formation. Eschewing traditional rotors for a sleek orb structure, this beautiful rethinking of conventional wind turbine design utilizes the Venturi principle, which funnels wind within the turbine’s blades. The resulting spherical wind turbine features increased efficiency and lower noise levels - making it ideal for small scale energy needs such as personal home use. Best of all it’s called the Energy Ball: the fun name is an added bonus.

66541925ra3.jpg


Most modern wind turbines utilize a flat three-blade design, wherein the head of the windmill is directed into drafts by a computer. The tips of these windmills can reach up to six times the speed of the wind. By contrast, the Energy Ball is designed to take advantage of the the Venturi effect, which was originally a measurement of pressure created by channeling an incompressible liquid through a restricted section of pipe. This spherical Energy Ball takes those principles and uses them to channel air through its six blades and around its generator.

This results in highly efficient turbine that can take advantage of very low wind speeds. Home Energy primarily designs small-scale energy solutions for homes, communities, businesses and public facilities. In my opinion they should also be designing for amusement parks: perhaps these fun pinwheels could help offset the carbon impact of all those funnel cakes.

Izvor: Inhabitat
http://www.inhabitat.com/2008/09/03/energy-ball-by-home-energy/#more-13927
 
Chicken Manure to power 90,000 Homes in the Netherlands!
by Mike Chino




Here at Inhabitat we love to see innovative reuses for organic waste, and so we’re perpetually fascinated by the potential of poo to be used as a renewable source of energy. Last week Dutch agriculture minister Gerda Verburg announced a groundbreaking development for the field as she unveiled the world’s largest biomass power plant to run exclusively on poultry manure. The plant will convert a third of the nation’s chicken waste into energy while running at a capacity of 36.5 megawatts - enough to power 90,000 homes!



Part of the promise of biomass energy lies in its two-for-one benefit: it generates energy while disposing of waste. We’ve covered poo power schemes in the past, but never on such a massive scale!

Situated in Moerdijk, the 150 million euro plant was constructed by the Dutch multi-utility company Delta. It will convert roughly 440,000 tons of chicken manure into energy annually, generating more than 270 million kilowatt hours of electricity per year. The plant also addresses a key environmental problem in the Netherlands: “managing the vast excess stream of chicken manure, which, until today, had to be processed at a high cost”.

Delta’s biomass plant has even been described as being carbon neutral, since it will prevent the manure from sitting in fields and seething greenhouse gases into the air. Once methane from the poultry waste has been extracted and ignited, the left over ash will be used to make fertilizers and other agricultural products.




Peter Boerma, the CEO of Delta states:
The biomass power plant is one of the strategic components of our energy mix, which includes a wide range of renewable sources, as well as nuclear power. This diverse energy mix is needed to meet the ever increasing demand for electricity, but for us, building a smart and clean fuel sourcing strategy is more than meeting the consumer’s demand, it is a matter of meeting our social obligations.
Photo credit:paul de Lhama

Izvor: Inhabitat
http://www.inhabitat.com/2008/09/08/dutch-harvest-chicken-manure-to-power-90000-homes/#more-14080

Nisam siguran koliko pilića imamo, ali sam siguran da mnogo kake. :) Manje elektrane bi mogli da podignu veliki proizvođači živine.
 
Vrh